Inference for high-dimensional sparse econometric models

نویسندگان

  • A. Belloni
  • V. Chernozhukov
  • C. Hansen
چکیده

This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is wellapproximated by a parsimonious, yet unknown set of regressors. The latter condition makes it possible to estimate the entire regression function effectively by searching for approximately the right set of regressors. We discuss methods for identifying this set of regressors and estimating their coefficients based on l1-penalization and describe key theoretical results. In order to capture realistic practical situations, we expressly allow for imperfect selection of regressors and study the impact of this imperfect selection on estimation and inference results. We focus the main part of the article on the use of HDS models and methods in the instrumental variables model and the partially linear model. We present a set of novel inference results for these models and illustrate their use with applications to returns to schooling and growth regression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Sparse Econometric Models, an Introduction

In this chapter we discuss conceptually high dimensional sparse econometric models as well as estimation of these models using l1-penalization and postl1-penalization methods. Focusing on linear and nonparametric regression frameworks, we discuss various econometric examples, present basic theoretical results, and illustrate the concepts and methods with Monte Carlo simulations and an empirical...

متن کامل

Power Enhancement in High Dimensional Cross-Sectional Tests.

We propose a novel technique to boost the power of testing a high-dimensional vector H : θ = 0 against sparse alternatives where the null hypothesis is violated only by a couple of components. Existing tests based on quadratic forms such as the Wald statistic often suffer from low powers due to the accumulation of errors in estimating high-dimensional parameters. More powerful tests for sparse ...

متن کامل

Bayesian inference in a class of partially identified models

This paper develops a Bayesian approach to inference in a class of partially identified econometric models. Models in this class are characterized by a known mapping between a point identified reduced-form parameter μ, and the identified set for a partially identified parameter θ. The approach maps posterior inference about μ to various posterior inference statements concerning the identified s...

متن کامل

Bayesian inference in a class of partially identified models

This paper develops a Bayesian approach to inference in a class of partially identified econometric models. Models in this class are characterized by a known mapping between a point identified reduced-form parameter μ, and the identified set for a partially identified parameter θ. The approach maps posterior inference about μ to various posterior inference statements concerning the identified s...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011